Neovasculaization in Ischemic Hindlimb

Byoung-Kwon, Lee M.D.

Department of Internal Medicine, Sanggye Paik Hospital, Inje University Medical College.

Background

- Increase 500~1,000 new PAOD patients annually, & 150,000 patients should be taken amputation in USA.
- Leading pathophysiology is atherosclerotic PAOD as seen in coronary and cerebral arterial disease.
- Drug treatment, angioplasty(PTA), surgical procedure (Bypass) were performed, but disappointing severe cases.... About 10~25%

Therapeutic angiogenesis!

Therapeutic angiogenesis

Muscle Ischemia due to vessel occlusion

Improvement of blood flow & function

Endogenous angiogenic factors

Factor	MW	Endothelial mitogen	Year reported
Fibroblast growth factor		•	-
acidic	18,000	yes	1984
basic	16,400	yes	1984
Angiogenin	14,100	no	1985
TGFα	5,500	yes	1986
TGFβ	25,000	no	1986
TNFα	17,000	no	1987
VEGF	45,000	yes	1983
PDEGF	45,000	•	1989
GCF	17,000	yes	1991
Placental growth factor	25,000	weak	1991
Interleukin 8	40,000	yes	1992
Hepatocyte growth factor	92,000	yes	1993
Proliferin	35,000	yes	1994

Folkman J, N Engl J Med 1995;333:1757

Ideal agent for therapeutic angiogenesis

- Potent angiogenesis
- · Sustained clinical benefit
- Specific to targeted ischemic tissue
- Absence of unwanted angiogenesis
- High local concentrations
- Adequate exposure time
- Re-administration feasible
- Non-invasive method of delivery (oral or intravenous)
- Inexpensive (cost effective)

Therapeutic angiogenesis Considerations

- Which angiogenic factor, or combination of factors, is the most effective in inducing the formation of new blood vessels?
- Which delivery system is best suited to induce therapeutic angiogenesis?
- Is therapeutic angiogenesis safe for clinical use?
- How long do the newly formed blood vessel persist?

Angiogenesis Differences between gene and protein therapy

	Gene therapy	Protein therapy Finite	
Temporal exposure	sustained		
Dose response	Unpredictable Defined		
Administration	Single	Repeated	
Targeting	Possible	Possible	
Slow release	Yes	Possible	
Inflammatory response	Yes	No	
Foreign material	Yes	No	
Serum half-life	Long short		
Tissue half-life	Unpredictable	Short	

Angiogenesis, & Arteriogenesis

- Angiogenesis
 Formation of capillary network
 Increased expression of the VEGF gene
- Arteriogenesis

Growth of preexisting collateral arteries
Initiated when shear stress increase in the
preexistent collateral pathways upon a narrowing
a main artery

Shear stress-activated endothelial cells with upregulate transcription and translation of the MCP-1 gene and the adhesion molecule ICAM-1.

Arteriogenesis

- Can arteriogenesis be stimulated when the collateral circulation has already matured?
- Arteriogenesis and atherosclerosis
 - Invasion of monocyte, the inflammatory environment, the migration of smooth muscle cell, upregulation of adhesion molecules

Constitutive Expression of phVEGF₁₆₅ After Intramuscular Gene Transfer Promotes Collateral Vessel Development in Patients With Critical Limb Ischemia

Iris Baumgartner, MD; Ann Pieczek, RN; Orit Manor, PhD; Richard Blair, MD; Marianne Kearney, BS; Kenneth Walsh, PhD; Jeffrey M. Isner, MD

Circulation 1998;97:1114

Before gene therapy

After gene therapy (8wks)

Clinical trials Therapeutic angiogenesis, CAD

Authors	n	Angiogenic factors	Route	Results
Schumacher et al.	20	aFGF protein	IM (R)	+
Seike et al.	8	bFGF-protein	IM	+
Laham et al	24	bFGF-protein	IM (R)	+
Unger et al.	25	bFGF-protein	IC (R)	safe
Laham et al.	52	bFGF-protein	IC	+
Simmons et al.	337	bFGF-protein	IC (R)	-
Rogengart et al.	21	Ad/VEGF121	IM	+
Losordo et al.	5	VEGF165-plasmid	IM	+
Gibson et al.	28	VEGF165-protein	IV	+
Henry et al.	178	VEGF165-protein	IC+ IV (R)	-

Epstein et al. Cardiovascular research 2001

FGF-2 in endothelial cells

- 18, 22, 22.5, and 24 kDa
- Mitogen for both EC and SMC
- modulation of integrin expression (Klein et al., 1993)
- gap-junctional intercellular communication (Pepper and Meda, 1992)
- urokinase receptor upregulation (Mignatti et al.,
 1991a).

Methods

- New Zealand white rabbit (male, 3.5 –4.0Kg)
- Group; FGF, LacZ for control
- FGF; unique 4sFGF-2 recombinant gene, Vector; Adenovirus

Methods

Anatomic assessment of angiogenesis

Gross: angiographic vessel count (>1mm)

: by using electric caliper

Micro: tissue analysis

- vessel count under routine H-E stain
- evaluate angiogenesis, arteriogenesis under HIS with Flk-1 for eary and VWF for late angiogenesis.
- Functional assessment of angiogenesis

APV, MPV ratio between internal iliac a. / abd. aorta

: Can solve the problem of anatomic, physiologic differences between individuals

Result

Day 14

LacZ group

Day 30

Tissue Study

Fibrotic region : angiogenesis

Massive infiltration of firoblasts and neovascularization with interstitial fibrosis

Conclusion

- Anatomic & Functional study is essential for assessment of angiogenesis.
- Prominent widened interstitial septa and endothelial proliferation with Hypertrophic change of muscle cells in tissue study.
- The method for evaluation of systemic effect will be required. (e.g. peripheral FGF conc.).

Conclusion

Problems to be solved

- Which angiogenic factor will turn out to produce an optimal effect?
- Will the protein or gene be a superior means of delivering the factor?
- Dose optimization of response require a multiple-factor strategy?
- What is the optimal delivery strategies?
- Will there be serious side effects?

Cell-Based Gene Transfer

- A relatively homogenous population of genetically modified cells can be developed.
- Transfer and expression of transgene can be confirmed and optimized.
- <u>Immune-inflammatory responses to vector may be minimized.</u>
- Myocardial cell transplantation