2019 순환기의공학회, 제주대학교, 2019/6/21~22

An interdisciplinary study of pulmonary fluid dynamics with medical imaging, machine learning, and high-performance CFD methods

Sanghun Choi

Assistant Professor, Department of Mechanical Engineering

Kyungpook National University

CONTENTS

- QCT Imaging-Based Structural and Functional Metrics
- Airway Structure and Lung Function Differences:
 - Korean Asians vs. White Americans
 - Healthy Koreans vs. Cement Dust Exposed Koreans
- Asthma Attack vs. Lung Function Recovery
- Aerosol Delivery for Healthy Subjects vs. Asthmatics
- 1-D Airway Resistance and Compliance Modeling

Derivation of QCT Imaging-Based Structural and Functional Metrics

QCT-based Segmental Structural Variables

TLC: Total lung capacity

FRC: Functional residual capacity

Pulmonary automatic segmentation program

Segmental STRUCTURAL VARIABLES

 \triangleright Wall thickness (WT), Bifurcation angle (θ), Circularity (Cr) and Hydraulic diameter (D_h)

$$WT = D_{outer} - D_{ave}$$

$$\theta = \cos^{-1} \left(\frac{\mathbf{d}_1 \cdot \mathbf{d}_2}{|\mathbf{d}_1| |\mathbf{d}_2|} \right)$$

$$Cr = rac{\pi D_{ave}}{P_e}$$
 $D_h = rac{4 imes LA}{P_e} = rac{Cr^2}{\pi} P_e$

QCT-based Structural and Functional Metrics

Insight Segmentation and Registration Toolkit

TLC: Total lung capacity

FRC: Functional residual capacity

Galban et al. 2012 (Nature Med)

IMAGE REGISTRATION TECHNIQUE

- > A mass preserving image registration* is employed to match two sets of images.
- Assume that tissue volume remains the same between two inflation levels.

* Yin et al. (2009, *Med Phys*)

SSTVD: sum of squared tissue volume difference L-BFGS-B: Optimize displacements of control grids

REGISTRATION-DERIVED METRICS

Air volume change:

$$\Delta V_{air}(\mathbf{x}) = V_{air}^{ref}(\mathbf{x}) - V_{air}^{f}(\mathbf{T}(\mathbf{x}))$$

Jacobian:

$$J = \lambda_1 \lambda_2 \lambda_3$$

Anisotropic Deformation Index*:

$$ADI = \sqrt{\left(\frac{\lambda_1 - \lambda_2}{\lambda_2}\right)^2 + \left(\frac{\lambda_2 - \lambda_3}{\lambda_3}\right)^2}$$

Air volume change:

Local air volume difference between TLC (reference) and FRC (floating)

J (The determinant of Jacobian):

Local volume ratio of TLC to FRC including tissue and air volumes

(*J*>1 : Expand, *J*=1: same, *J*<1:Contract)

ADI (Anisotropic deformation index):

ADI increases, if one or two directional strains are greater than others. If it deforms isotropically ($\lambda_1 = \lambda_2 = \lambda_3$), ADI is zero.

QCT-based Structural and Functional Metrics

Choi et al. 2017 (J Allergy Clin Immunol), Quantitative computed tomographic imaging-based clustering...

Airway Structure and Lung Function

- Koreans vs. Whites
- Healthy vs. Dust Exposed

QCT RESULTS I

64 Koreans vs. 64 Whites

Airway hydraulic diameter (D_h) was smaller in Koreans than that in Caucasians

QCT RESULTS I

64 Koreans vs. 64 Caucasians

Percent of functional small airway disease (fSAD%) of Koreans was significantly larger than Caucasians especially in lower lobes.

QCT RESULTS I

64 Koreans vs. 64 Caucasians

Ventilation fraction of lower lobes in Korean was smaller than that of Caucasian, consistent with larger fSAD% in the same lobes of Korean.

Asthma Attack vs. Lung Function Recovery

QCT RESULTS III

An patient with asthma attack

A patient with asthma attack

A patient after recovery

QCT

Particle Simulation

An patient with asthma attack

A patient with asthma attack

A patient after recovery

Aerosol Delivery for Healthy Subjects vs. Asthmatics

3-D CFD PURPOSE

Source: Animated Biomedical

Using two CT imaging (insp- and expiration), CFD simulations for normal & severe asthmatic subjects

3-D CFD METHODS I

i/r

	Normal	Asthmatic
Node	792,207	899,941
Element	4,383,692	4,928,606

3-D CFD METHODS II

<Expiratory CT>

Image registration

$$\Rightarrow \frac{\Delta v}{\Delta V} \approx \frac{dv}{dV}$$

(V: Total air volume, v: Local air volume)

Boundary condition

$$\Rightarrow \frac{dv}{dt} \approx \frac{dV}{dt} \times \frac{dv}{dV}$$

3-D CFD RESULTS I

Pressure distribution

Normal

Asthmatic

TriRLL	Normal	Asthmatic	Asthmatic/Normal (%)
1.2s	-4.87 Pa	-29.23 Pa	600
3.6s	6.4 Pa	11.12 Pa	174

3-D CFD RESULTS II

Particle simulation

t=0~1.2 s

Particle diameter: 3 μ m

1-D Airway Resistance and Compliance Modeling

1-D CFD

PURPOSE AND METHODS

Purpose of study

- ✓ 1-D CFD model to analyze fluid dynamic features for healthy and asthmatic subjects.
- ✓ Moving 1-D mesh → Displacement and diameter

CT scan images

- √ 5 healthy vs. 5 asthmatic subjects
- ✓ Dynamic CT (4-D CT) & 2 static CTs at inspiration and expiration

Procedure of generating moving 1-D mesh

(1) Time – volume spline, V_{tidal}(t)

1-D CFD RESULTS II

Pressure Distributions

1-D CFD RESULTS III

• Hysteresis curve of P_{pl} vs. V_{tidal}

< An asthmatic subject >

Mean effective pressure = 51 Pa, 158 Pa (static); 47 Pa, 134 Pa (moving)

$$\Delta P = RQ$$
, $Resistance = \frac{128\mu L}{\pi d^4}$ (Poiseuille); $\frac{128\mu L}{\pi d^4} \left[\frac{2\gamma}{\sqrt{\pi L \nu}} Q^{0.5} \right]$ (Pedely)

ICFM Laboratory

Interdisciplinary Computational Fluid Mechanics

http://icfm.knu.ac.kr

- ✓ Image analysis, Registration and Cluster analysis using Quantitative Computed Tomography (QCT) images
- ✓ Pulmonary Air Flows and Particle delivery with advanced 3-D CFD techniques
- ✓ 1-D Airway Resistance and Lung Compliance Dynamic Modeling
- ✓ Two-phase Flows with FEM, OpenFOAM, and ANSYS

ACKNOWLEGEMENT

NRF-2017R1D1A1B03034157

R18XA06-67

RE201806039

