순환기의공학회, 부산 벡스코, 2018/6/23

멀티스케일 이미지 변수를 통한 천식과 만성기관지 호흡 장애 환자의 변이에 대한 비교분석

Sanghun Choi

Assistant Professor, Department of Mechanical Engineering

Kyungpook National University

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATOR

PRESENTATION OVERVIEW

- > Predictive Framework with Asthma Imaging Data
 - Functional Characteristics via Image Registration
 - Functional Characteristics via CT Density-based Air-trapping
 - Airway Structural Characteristics via <u>Image Segmentation</u>
 - Machine Learning-based Clustering Analysis
- > Applications of Multiscale QCT imaging-based metrics

Predictive Framework with Asthma Imaging Data

M KNU

AIR-TRAPPING PERCENTAGE (AirT%)

Healthy

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATORY

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATORY

® KNU

INTERSITE PROTOCOL DIFFERENCE

- CT images from two different centers
 - PITT: The University of Pittsburgh (14 HS, 26 NSA and 30 SA)
 - WSL: Washington University in Saint Louis (11 HS, 16 NSA and 22 SA)

Imaging Centers	Scanners
PITT	General Electronics VCT 64
WSL	Siemens Sensation 16

HS: Healthy subjects

NSA: Non-severe asthmatics SA: Severe asthmatics

CT Densities of HU_{air} and HU_{tissue} are different!

*Hounsfield Unit (HU)

FRACTION-BASED AIR-TRAPPING

 \triangleright Air-fraction (β_{air}) is less sensitive to the scanner difference because it is a non-dimensional value, unlike CT density.

$$\beta_{air} = \frac{HU_{tissue} - I}{HU_{tissue} - HU_{air}}$$

$$I = \beta_{air} H U_{air,trachea} + (1 - \beta_{air}) H U_{tissue}$$

 \triangleright Example (β_{air} =90%)

New approach $I_{threshold} = 0.9 HU_{air,trachea} + 0.1 HU_{tissue} \quad {\rm vs.} \label{eq:threshold}$

Existing approach $I_{AB} = -856 \ HU$

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATORS

 \rightarrow HU_{air} was only corrected, because the difference of HU_{tissue} was marginal when obtaining the adjusted threshold.

® KNU

ICFIN

EXISTING DENSITY-BASED AIR-TRAPPING

> FRC (CT) volume vs. existing AirT% in three populations

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATOR

- There is **no consistency within groups** if existing AirT% is applied.
- The slope of WSL HS is even steeper than PITT SA.
- Overall AirT% of WSL is much greater than AirT% of PITT.

MKNU

NEW FRACTION-BASED AIR-TRAPPING

> FRC (CT) volume vs. Adjusted AirT% in three populations

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATOR

- After applying β_{air} of 90%, each group has distinct slopes.
- PITT (SA) has lower FEV1/FVC than WSL (SA) (P<0.05).

S Choi et al. (2014) J Appl Physiol, Improved CT-based Estimate of Pulmonary Gas-trapping...

KNU

|**|C**|F|**|V|**

EXISTING BRONCHIAL VARIABLES

Luminal narrowing

- *LA*
- $D_{ave} = \sqrt{4LA/\pi}$

Wall thickening

- WA% = WA/TA
- WA = TA LA
- $WT = D_{outer} D_{ave}$

➤ Luminal narrowing is evaluated by LA or D_{ave}, whereas caution needs to be taken using WA%, WA and WT for wall thickening.

EXISTING BRONCHIAL VARIABLES

Wall thickening

- WA% = WA/TA
- WA = TA LA
- $WT = D_{outer} D_{ave}$

➤ WA vs. WT

➤ WA% vs. LA*

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATORY

Using WT would be the best way to assess wall thickening.

® KNU

CFIVI

NEW BRONCHIAL STRUCTURAL VARIABLES

 \triangleright Bifurcation angle (θ), Circularity (Cr) and Hydraulic diameter (D_h)

$$\theta = \cos^{-1} \left(\frac{\mathbf{d}_1 \cdot \mathbf{d}_2}{|\mathbf{d}_1| |\mathbf{d}_2|} \right)$$

$$Cr = \frac{\pi D_{ave}}{P_e}$$

$$D_h = \frac{4 \times LA}{P_e} = \frac{Cr^2}{\pi} P_e$$

NEW NORMALIZATION SCHEMES

Existing airway size assessments

Airway narrowing:

LA/BSA (Luminal area / Body surface area)

Wall thickening:

WA/BSA (Wall area / Body surface area)

✓ BSA ~ function (Height, Weight)

New airway size assessments*

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATORY

Prediction of tracheal diameter and wall thickness from 61 healthy subjects

D_{trachea,pred} (mm) = 16.446 - 2.4019 gender - 0.29881 gender xage + 0.02848 agexheight + 0.17866 gender xage xheight

 $WT_{trachea,pred}$ (mm) = 4.5493 - 0.5007 gender + 0.3007 log₁₀(age) \times height

✓ Gender is an important variable of airway size.

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATORY

	BSA ^{1/2}	$oldsymbol{D}_{trachea,pred}$	Correlation Compare (<i>P</i>)
$D_{trachea}$	R = 0.48	R = 0.79	< 0.001
D_{LMB}	R = 0.45	R = 0.68	< 0.05
D_{RMB}	R = 0.43	R = 0.71	< 0.01

® KNU

WALL THICKNESS & HYDRAULIC DIAMETER

Normalized wall thickness (WT*)

	Healthy	Non-severe	Severe	Kruskal-Wallis
	subjects	asthmatics	asthmatics	tests (P value)
sRUL	0.612 (0.05)	0.608 (0.04)	0.630 (0.05)	< 0.005 †‡
LMB	0.748 (0.09)	0.773 (0.09)	0.794 (0.09)	< 0.005 ‡
LB1+2	0.631 (0.06)	0.620 (0.05)	0.662 (0.08)	< 0.005 †‡

Normalized hydraulic diameter (D_h*)

	Healthy subjects	Non-severe asthmatics	Severe asthmatics	Kruskal-Wallis tests (P value)
RB9+10	0.389 (0.06)	0.358 (0.07)	0.345 (0.07)	< 0.001 ‡
sRML	0.280 (0.04)	0.261 (0.05)	0.251 (0.05)	< 0.001 *‡
sRLL	0.303 (0.04)	0.281 (0.05)	0.274 (0.05)	< 0.005 *‡
TriLLB	0.485 (0.06)	0.456 (0.06)	0.446 (0.08)	< 0.005 *‡
sLLL	0.338 (0.04)	0.316 (0.05)	0.307 (0.05)	< 0.001 *‡

Trachea

Trachea

SRUIL

SIUL

Values are presented as mean (SD).

- *: Healthy vs. Non-severe asthma
- †: Non-severe asthma vs. Severe asthma
- ‡: Healthy vs. Severe asthma

S Choi et al. (2015) J Appl Physiol, Quantitative assessment of multiscale structure...

IMAGING AND CLINICAL CHARACTERISTICS

Imaging characteristics

Clinical characteristics

- Normal airway structure
- Increased lung deformation (Jacobian and ADI↑)
- Younger, early onset
- Nonsevere asthma
- Reversible lung function
- Easy to control asthma symptoms
- Airway luminal narrowing $(D_h^*\downarrow)$ Nonsevere and severe asthma No airway wall thickening (WT*) Persistently altered lung function Marginal to no inflammation
 - Difficult to control asthma symptoms

Cluster 3

Cluster 2

Airway wall thickening (WT*↑)

Significant reduction of lung

No airway luminal narrowing (D_h^*)

deformation (Jacobian and ADI↓)

- Moderate reduction of lung deformation (Jacobian and ADI↓)
- Obese, female-dominant
- Severe asthma
- Reversible lung function
- Blood lymphopenia
 - Difficult to control asthma symptoms

- Airway luminal narrowing $(D_h^*\downarrow)$
- Significant reduction of lung
- deformation (Jacobian and ADI↓)
- Significant air-trapping (AirT%1)
- Older, late onset, male-dominant
- Severe asthma
- Persistently altered lung function
- Neutrophilic-dominant inflammation
- Difficult to control asthma symptoms

S Choi et al. (2017) JACI, Quantitative computed tomographic imaging-based clustering...

APPLICATIONS OF MULTISCALE QCT IMAGING-BASED METRICS

® KNU

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATORY

✓ Deep learning for classification of healthy subjects, asthma and chronic obstructive pulmonary disease (COPD).

Humans subjects data sets

■ Asthma ■ COPD ■ Healthy subjects

® K⊓U //CF/M

• **75 QCT imaging variables** including airway diameter, wall thickness, air trapping, lung shape, air-volume change, Jacobian, ADI, and more [1].

® KNU ICFM

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATOR

Preliminary Results

- ✓ As a result of 28,000 iterations in training data, it has a loss of less than 0.1 and an accuracy of 99%.
- ✓ In testing data, we obtained the **same accuracy of 87**% as increasing the number of layers.

Layer(s)	One	Two	Three	Four
Accuracy	87%	87%	87%	87%
Time(s)	10.5	11.9	13.5	16.0

✓ This study demonstrates the potential of deep learning technique to serve as a simple but highly competitive method for classifying respiratory diseases.

® KNU ICFM

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATORS

KOREAN DATASETS

	Processed subjects	Females	Males	Smokers (Former+ Current)	Non- smokers
Healthy subjects	260	144	116	69	191
Asthmatic patients	63	43	20	15	48
Total	323	187	136	84	239

✓ QCT Imaging metrics could be expanded for multiple studies of Korean subjects

® KNU

ICF/VI

Caucasian vs. Asian (Korean)

- ✓ Extracted only non-smoker healthy females
 - SARP (Severe Asthmatic Research Program): 31 subjects
 - SNUH (Seoul National University Hospital): 31 subjects

	Caucasian	Asian (Korean)	P value (T-test)
Age (years)	38.7 (14.5)	40.5 (13.2)	0.6
Height (cm)	164 (6.0)	159 (6.4)	4.2×10^{-3}
Weight (kg)	66.7 (12.6)	57.7 (6.6)	0.0028
BMI (kg/m ²)	24.7 (4.1)	22.8 (2.7)	0.07

INTERDISCIPLINARY COMPUTATIONAL FLUID MECHANICS LABORATOR

Caucasian vs. Asian (Korean)

✓ Comparison of airway structure and function using QCT imaging metrics

	Caucasian	Asian (Korean)	P value (T-test)
TLC (liters)	4.24 (0.64)	3.17 (0.63)	< 0.001
FRC (liters)	1.74 (0.52)	1.91 (0.52)	0.11
IC (liters)	2.30 (0.52)	1.26 (0.60)	< 0.001
$D_{\rm h}$ at sLLL (mm)	5.3 (0.6)	4.6 (0.5)	< 0.001
fSAD%(RLL)	0.9%(0.4%)	2.5%(0.9%)	0.04
U/(M+L) v	60 (8.7)	74 (14.1)	< 0.001

✓ Lung function reduction in lower lobes of Korean!

® KNU

Image analysis Menopause vs. Menstruation

- · Non-smoker healthy subjects
 - SARP (Severe Asthmatic Research Program)

	Women			Men		
	Old (>55)	Young (<45)	P value	Old (>55)	Young (<45)	P value
Subjects	29	43		25	28	
Age (years)	63.3 (7.2)	29.5 (8.3)	< 0.001	64.7 (6.5)	25.1 (5.5)	< 0.001
Height (cm)	163.4 (6.9)	164.7 (5.2)	0.37	; 174.9 (7.1) :	177.9 (7.6)	0.14
Weight (kg)	70.8 (15.5)	70.0 (18.1)	0.86	87.8 (11.4)	84.6 (19.9)	0.47
ВМІ	26.5 (5.2)	25.8 (6.4)	0.63	28.8 (4.2)	26.6 (5.6)	0.11

Image analysis Menopause vs. Menstruation

- ✓ In old women (menopausal), functional small airway disease (fSAD%) increased, whereas young women (menstruation) had significant smaller fSAD%. → Possibly due to Hormone effect.
- ✓ Larger FRC volume in menopausal women → An increase of fSAD% and an increase of TLC for compensatory function (hyperinflation).
- ✓ Only menopausal women (not in men) had a decrease of volume change (Jacobian) in upper and middle lobes (LUL, RUL and RML). → Possibly due to lung compliance decrease.

® K⊓U ICFM

ACKNOWLEDGMENTS

Collaborators

Dr. Ching-Long Lin

Dr. Eric A. Hoffman

Dr. Sally E. Wenzel

Dr. Mario Castro

Dr. Hyoung Gwon Choi

Dr. Chang Hyun Lee

Dr. Jiwoong Choi

Dr. Keumjoo Chae

Dr. Sujeong Kim

Lab Members

Mr. Hyunbin Cho

Mr. Jichan Jeon

Mr. Daeyoung Kim

Ms. Sujin Yoon

Ms. Gyeongim Lee

Ms. Jiyoung Kim

